Java |O Streams
Part 1

By Fadel K.
www.fadelk.com

Tl
AW 1\0\“&

AT

IO Operations in Standard 1O package (java.io)

{D"‘Gf"

A el i, - Ag SR AV - ¢ 70, e (sl .
LR i Dt i, £ --. 3 Sl =T TR O et e el
= ety s o < h A al> 4 Sy A -
Ly -1“4-—. L A e e - e e
3= _a e ey l"_« b ST O e P 2 PN -

0 Programs reqd mputs from\daia sources\(e g.,

keyboard, file, network, or another program) and
write outputs io(e.g., console, file,

network, or another program).

f'i'él"if& RSt !: -._';'—".:'.‘_“-:"

o Inputs and outputs in Java are handled by the so-
called‘ stream| A stream is a seguential and
continuoys one-way say flow of information (just like

water or oil flows through the pipe).

o It is important to mention that Java does _not
differentiate between the various types of data
sources or sinks (e.g., file or network). They are all

treated as a sequential flow of data.
w

IO Operations in Standard 1O package (java.io)

i & I ti e roasa e e e e S TUFv— & - ST T e RS S i I SRR B e TR i i N e
o Lo e e e T e N . - w e e S R oY R AT N = T 5 B LSRR Al A e S AR e S R e

NPT S T By 2t e s T 277 =R A el T T L P i P e > FAMTR s § LR Gy S B e e 5

) . .'.'\." = Fo A e N e S T NS TNl : RSOt 2 gh s M A S, ey

The input and output streams can be established
from/to any data source/sink, such as files,
network, keyboard/console or another program.

- The Java program receives data from data source
by opening an— and sends data to
data sink by opening an{output stream)

o All Java 1/O streams are one-way (except the
RandomAccessFile, which will be covered later).
If your program needs to perform both input and

output, you have to open two separate streams -
an input stream and an output stream.

IO Operations 3 Major Steps

T P R L N TR 1T e 1 e T e S . R e S e ey i S e e T Y -
LT SRS e e ;] o o)

7 10 operations involved three steps:

1. Open an input/output stream associated with a

physical device (e.g., file, network,
console/keyboard), by constructing an
appropriate |O-stream object.

2. Read from the opened input stream until "end-
of-stream” encountered, or write to the opened

T R R N e NSy

output stream (optionally flush the buffered
output).

3. Close the input/output stream.

|O Universes

0 Java 1O works in two different universes

0 Character based 10: for16-bit (2 bytes) streams,

required when dealing with character sets (i.e. Text).

0 Byte based 10: for 8-bit (1 byte) streams, required in
fact for everything ©

P\ I
? Java Program [

S b-\‘,] <: Input
é z‘ h Stri
Reader/Writer | chlgl_ﬂé;-;;m_g 1 ~— _

o/

-
. Byte-stream —
InputStream/OutputStream .
nputStream/Outp ream || E (8-bit) ot
= Binary Files ::
= Text Files (ASCII, UCS-2/UTF-8) ——

(System-dependent)

Byte-Based |O & Byte Streams

InputStream ‘
s

Ou?puf?tream
FileInputStream I FileQutputStream
FilterInputStream FilterOutputStream
JAN —{ BufferedInputStream A I—BufferedOutputStream
DatalnputStream LMUtPUtStPeam

— LineNumberInputStream ﬂ‘_iic.Str‘eam

|_|PushbackInputStream —| PipedOutputStream
PipedInputStream — ByteArrayOutputStream
SequenceInputStream — ObjectOutputStream
ByteArrayInputStream

1\

StringBufferInputStream

Deprecated,, This class does not properly

ObjectInputStream

convert characters into bytes. As of JDK 1.1,

the preferred way to create a stream Trom &

string is via the StringReader class.
6

Input & Output Streams

. el e TR M o T TSR T L ARG T 1 ke LD N
SRR v s R e IR

0 Byte streams can be used to read or write bytes
serially from an external device.

0 All the byte streams are derived from the abstract
superclass InputStream and OutputStream, as
illustrated in the previous class diagram.

0 The abstract superclass InputStream declares an

abstract method read() to read one data-byte

from the input source, and convert the unsigned
byte value (of O to 255) to an int.

i ol 2o iteY szcS

InputStream Read() Method

0 The read() method will continue reading:

o0 Until a byte is available,

o An 1/O error occurs,

Eatpa s SIS == ey

i1 Or the "end of stream"” is reached.

e R ek S R e ey e R Ty

o It returns|-1{if for "end of stream", and throws an
IOException if it encounters an 1/O error.

// read one data-byte from the input stream

public abs act\intlread() throws IOException
| 1Bvte |

0- 1 Byte | 1 Byte | 1 Byte
| [Tnt o\

InputStream Read(byte[])

01 First variation of read() method is implemented in
the InputStream for reading a block of bytes into
a byte-array buffer. It returns the number of bytes
read, or -1 if "end-of-stream"” encounters.

// Read from a source into an array of bytes

public int read (byte[] bytesBuffer){throws IOExceptionI

| int |
by':e X

InputStream Read(byte[], int, int)

- Second variation of read() method is implemented in
the InputStream for reading a block of bytes into a
byte-array buffer, to fill the array partially. It returns
the number of bytes read, or -1 if "end-of-stream"
encounters.

// Read "length" number of bytes,
// store in bytesBuffer array starting from index offset.

public int read(byte[] bytesBuffer, =3 byte |

= e TR S I Sy
N 1nt offset] .
|© int length) byte N -1
throws IOException

| int |

byte X -1
byte X

10

OutputStream Write() Method

~ Similar to the input counterpart, the abstract
superclass OutputStream declares an abstract
method write() to write a data-byte to the output
sink. The least significant byte of the int
argument is written out; while the upper 3 bytes
are discarded.

// write one data-byte to the output stream

public void abstract void write(int unsignedByte)
throws IOException

1Bvyte

| Int unsignedByte

OutputStream Write() Method Cont.

- Similar to the read(), two variations of the write()
method to write a block of bytes from a byte-
array buffer are implemented

// Write "length" number of bytes,
// from the bytesBuffer array starting from index offset.

public void write(byte[] Buffer, int offset, int length)
R e s SRR .
throws IOException

// Same as write (bytesBuffer, 0, bytesBuffer.length)

public void write (byte[] Buffer) throws IOException
I ——————————

12

Input & Output Streams Closing

~ Both the InputStream and the OutputStream
provides a close() method to close the stream, which
performs the necessary clean-up operations as well
as frees the system resources. (Although it is not
absolutely necessary to close the 1O streams
explicitly, as the garbage collector will do the job, it
is probably a good practice to do it to free up the
system resources immediately when the streams are
no longer needed.)

// close the opened Stream

public void close() throws IOException
R —

13

Moreover

0 In addition, the OutputStream provides a flush()
method to flush the remaining bytes from the output
buffer.

// Flush the output
public void flush() throws IOException

0 InputStream and OutputStream are abstract classes
that cannot be instantiated. You need to choose an
appropriate concrete implementation subclass to
establish a connection to a physical device.

14

public class T1 {
public static void main(String[] args) {

3

System.out.println(_a > 4);

)
System.out.println(a =5) ;

int a = 3;

System.out.println ((a\= % + 6) > 10);
\ =

16

FilelnputStream & FileOutputStream

o FilelnputStream and FileOutputStream are concrete
implementation to the abstract class of InputStream
and OutputStream, to support File |O.

2aad)
CAbshact > wWAt)
InputStream OutputStream

% FileInputStream % File&):tputSt ream

T

java.io

Class FileInputStream

java.lang.Object

L-java.io.InputStream

L-java.io.FileInputStream

Creates a Fi leInputStream by opening a connection to an actual
file, the file named by the File object file in the file system.

FileInputStream(FileDescriptor fdObj)

Creates a FileInputStream by using the file descriptor fdobj,
which represents an existing connection to an actual file in the file
system.

FileInPutStream(String name)
Creates a FileInputStream by opening a connection to an actual

file, the file named by the path name name in the file system.

java.io

Class FileOutputStream

=Rjava.lang.Object
- java.ilo.0OutputStream

o

L. java.io.FileOutputStream

File object.

FileOutputStream(File file, boolean append)
Creates a file output stream to write to the file represented by the specified

File object.

FileOutputStream(FileDescriptor fdobj)

Creates an output file stream to write to the specified file descriptor, which
represents an existing connection to an actual file in the file system.

FileOutputStream(String name) &
Creates an output file stream to write to the file with the specified name.

FileOutPutStream(String name, boolean append)
Creates an output file stream to write to the file with the specified name.

import java.io.¥*; — SRR | =
W - Example A

public class test {

public static void main(String[] args) {

try {
e

String P="E:\\test\\"; // p for path

String N="abc.bmp"; // n for name a\oC- 3
DI s ,\\‘Kcs\\\ \s.
File filelIn = new File(p + n); E?-

— S ’ F'D\QOCJ
FileInputStream fis = new FileInputStream(fileln) ;

FileOutputStream fos = new FlleOutputStream(p+"Copy Of"+n) ;

int a; // An integer of 4 bytes to hold a single byte.
R ALY,

// Read a single byte into int a , write it back in fos.
m
i = |— —
while ((a fis.read()) _;) {fos wr:l.te(a) }
fis.close() ; “O-—- 255 Fho\bx stgoam
fos.close() ;

} catch (Exception ex) {ex.printStackTrace() ;}

}

1 17

\@____a

[4 : Repeat Steps 1,2,3 for each byte in the file]

18

	hppscan1.jpg
	hppscan12.jpg
	hppscan13.jpg
	hppscan14.jpg
	hppscan15.jpg
	hppscan16.jpg
	hppscan17.jpg
	hppscan18.jpg
	hppscan19.jpg
	hppscan110.jpg
	hppscan111.jpg
	hppscan112.jpg
	hppscan113.jpg
	hppscan114.jpg
	hppscan115.jpg
	hppscan116.jpg
	hppscan117.jpg
	hppscan118.jpg
	hppscan119.jpg
	hppscan120.jpg

